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We derive a Fokker-Planck equation for the joint probability density of the displacement and the ve-
locity of a free particle subjected to an exponentially correlated Gaussian force. This equation is solved
analytically in the limits ¢ <<, ¢ >>7 and for =0 (white noise), where 7 is the correlation time. The pa-
rameters (moments) which determine the joint density are calculated including terms up to order ¢*/72
for t << 7, and up to order 7/t for ¢t >>7. For t << the marginal distribution of displacements is exactly
Gaussian, to the considered order. A Gaussian distribution derived approximately for ¢ >> 7 is suggested
to be exact, on the basis of independent, exact calculations of low-order moments. For Gaussian white
noise, the joint density is obtained exactly and yields a Gaussian distribution of displacements, with the
familiar superdiffusive form for the mean-square deviation. The marginal distribution of velocity obeys
an exact diffusion equation with a variable diffusion coefficient, for arbitrary 7.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

The instantaneous displacement x (¢) of a free particle
of mass m subjected to a purely random, uniform force is
the simplest example of a second-order process, which is
governed by the second-order stochastic differential equa-
tion

#(O=—f(1) . (1)
m
This process is clearly equivalent to two coupled first-

order processes corresponding to x (¢) and to the instan-
taneous velocity v (2), since

x(t)=v(t), (2a)
e L
v(t)= mf(t) . (2b)

The equivalent form [Egs. (2a) and (2b)] for the second-
order process (1) is convenient for deriving a differential
equation for the joint probability density p(x,v,?) of a dis-
placement x and a velocity v for the particle. For a
Gaussian random force this equation takes the form
of a two-dimensional Fokker-Planck equation whose
coefficients are generally time dependent. Despite their
fundamental interest, explicit solutions for distributions
of second- and higher-order processes occurring in phys-
ics, chemistry, or engineering (e.g., control, filtering com-
munications) are rare. In particular, for the free particle
in a random field f (#) one is interested in the joint densi-
ty p(x,v,t), as well as in the marginal distributions of dis-
placements and velocities:

p(x,t)=f_°o dv p(x,v,t) , (3a)
p(v,t)=f_°° dx p(x,v,1) , (3b)

which govern the probabilities of the independently
defined processes (1) and (2b), respectively.
Recently, however, Masoliver [1] was able to obtain ex-
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act differential equations for p (x,v,t), p(x,t), and p(v,?)
for dichotomous noise f(¢), and to study solutions for
p(x,t) and p (v,t) for large t. The random force alternate-
ly takes values *+a with a distribution #(¢) of time inter-
vals between changes of sign. Masoliver’s detailed solu-
tions apply in the case where ¥(z) is an exponential [2].
This corresponds to dichotomous Markovian noise,
where the autocorrelation function of f(¢) depends ex-
ponentially on the time difference:

(fOf))=rf—1t"),
(f(t))=0, 4)

_le—=r]
T

n=_L
h(t—1t") 5, SXP

with a correlation time 7 equal to half the average time
between sign changes. Masoliver’s work was motivated,
in particular, by recent studies of Pawula [3] of the prob-
ability density for the output of second-order oscillating
filters driven by dichotomous (or random telegraph)
noise.

The purpose of the present paper is to study the above
distributions in the simple case where f(¢) is a Gaussian
random force [4] with an exponential correlation of the
form (4). This type of random force is known as
Ornstein-Uhlenbeck noise, which further reduces to
Gaussian white noise,

(fO)f))=f28(t—1t"), (f(t))=0, (5)

in the limit 7=0 [since lim__ oh (£)=05(¢)]. We also recall
that an exponential autocorrelation of the form (4) is a
general feature of Markovian noise (Doob’s theorem).
Equation (1) with a Gaussian force f(¢) corresponds to a
Langevin model without dissipation, which is currently
being used, e.g., to model reaction kinetics [5] in systems
involving mixing of low-viscosity liquids, or in systems
that display turbulence or which are undergoing a fast in-
crease in temperature. As is well known, the random
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motion described by Eq. (1) with a force correlation (4) is
qualitatively different from the corresponding Brownian
motion described by the Langevin equation: one finds,
for example [6], that the mean-squared displacement in-
creases superdiffusively, i.e., {x2(¢)) ~t3, for ¢t >>, while
increasing as ¢* for ¢t <<7. The latter behavior is due to
the fact that for ¢ <<7 the Gaussian force is effectively
constant, which leads to a constant random acceleration
of the particle.

On the other hand, the influence of Ornstein-
Uhlenbeck noise on the dynamical behavior of nonlinear
first-order processes [i.e., processes such as (2b), with an
additional nonrandom force on the right-hand side (rhs)],
has been studied extensively in recent years [7], mostly
for small correlation times. Such processes find applica-
tion, e.g., in the fields of activation rates of chemical reac-
tions and of nonlinear optical systems. Since their statist-
ical dynamics is determined by the temporal evolution of
the probability density of the process, the following pro-
babilistic study of the free second-order process (1) and
(4) might prove useful in future discussions of nonlinear
second-order processes driven by Ornstein-Uhlenbeck
noise.

In Sec. IIA we derive an exact second-order partial
differential equation for the joint density p (x,v,?) and in
Sec. II B we obtain the general exact solution for the mar-
ginal distribution p (v,?). In particular, the form of p (v,t)
for t— o is used as a boundary condition for obtaining
asymptotic solutions for p (x,v,t) and for p(x,t) in Sec.
III. In Sec. III A we study exact solutions for the distri-
butions p (x,v,t), p(v,t) and p(x,t) in the domain ¢t <<7,
including the form of the lowest corrections to the limit-
ing expressions for —0. In Sec. III B we present the ex-
act forms of the distributions for the limit of a Gaussian
white-noise force (7=0) as a preliminary to the analysis
of the long-time distributions in Sec. III C. Our distribu-
tions for finite 7 in the asymptotic regime, ¢ >>7, are not
rigorously defined by boundary conditions. Therefore,
we compare them at the end of Sec. III C with exact cal-
culations of lower-order moments. In particular, this
suggests that our distribution of displacements is actually
exact, to the considered order. Some concluding remarks
are presented in Sec. IV.

II. FOKKER-PLANCK EQUATIONS
FOR PROBABILITY DENSITIES

A. Joint distribution of displacement and velocity

The joint probability density p(x,v,?) for a displace-
ment x and a velocity v at time ¢ is defined by

plx,0,8)={8(x —x(¢))8(v —v (2))) , (6)

where x (¢) and v (z) are the solutions of Egs. (2a) and
(2b) for a given realization f ():

_L t ’ ’
v(=—['drft), (7a)

___1_ t ’ t 12 "
x(=—-[ar [Tdrfar) . (7b)

Here we have assumed that the particle was at rest at
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t =0. By taking time derivatives of both sides of (6) we

obtain [using the vector notation &(u—u(z))
=8(x —x(2))8(v —v(1))]
plxo0) =—-a-—<-—ax(”5(u—u<t))>
at dx ot
0 [ov() _
av<_at 8(u u(t))>. (8)

By inserting Egs. (2a) and (2b) in the rhs we get, using the
identity z,8(z —zy)=z8(z —z,),

ap (x,v,8) _ - ap(x,v,t)
ot ax

~ L9 rnstu—u(e)) .
m ov

9)

Since x (¢) and v (t) are functionals of the Gaussian ran-
dom variable f(z), with zero mean value, we may use
Novikov’s identity [8] for expressing the average in the
second term on the rhs in the form

<f<t)a(u—u(t))>=fo’dt'<f(t)f(t'>>
<8(6(u—u(t))) >
8f(t") ’
where the functional derivative 8§(8(u—u(z)))/5f(¢t') is

5(8(u—wu(r))) _ _ 8x(r) 38(u—u(t))
8f(t") 5f(¢')  ox
_ u(r) 38(u—u(r))

(10)

57(1) 3 , (11)
where, from (7a) and (7b),
6x(¢) _ 1 dv(r) _ 1
57 (1) m(t t'), Sr) m (12)

Finally, we insert Egs. (10)-(12) into (9) and, after per-
forming the integrals over t’, using (4), we obtain the
closed partial differential equation

9p(x,0,1) ()g,tv,t) = —v%—ab(t) aj;y +aa(t)aaTz2
Xp(x,v,t) , (13)
where
a(t)=1—exp(—t/7), (14a)
b(t)=(t+r)exp(—t/7)—T, (14b)

and a=f3%/2m?. For a particle at rest at t =0 we have
p (x,0,0)=8(x)8(v) . (15)

This boundary condition may be used for determining
p(x,v,t) in the short-time regime, ¢ <<7. On the other
hand, for obtaining p(x,v,t) at loing times, such that
t >>71, we shall use the general form for the marginal dis-
tribution of the velocity, p (v,t), which is itself based on
(15). Therefore we now discuss the exact form of p (v, ?).

B. Marginal distribution of the velocity

The distribution of the velocity, p (v,t), is easily found,
either from the moments derived from (7a) or, more
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directly, from Eq. (13). From (7a) and (4) it follows that
the odd moments of p(v,t) vanish, while the Gaussian
form of f(¢) implies that the even moments are given by

(w))y=02n —1M[{v%(1))])", n=0,1,2,.... (16)

The average of v2(z) given by the average of (7a) squared
is

A))=f3m ?{t —r[1—exp(—t/7)]} . (17

Using (16), the infinite series expression for the charac-
teristic function may be summed in the form

d(k)=exp[ —k*(v(1)) /2], (18)

whose inverse Fourier transform readily yields the Gauss-
ian distribution

p(v,0)=[2m(vX(t)) ] exp{ —v2/[2(v%(1)) ]} . (19)

On the other hand, by integrating both sides of (13)
over displacements we obtain a generalized diffusion
equation for p (v,1),

2
pw,0) =oza(t)—*L—~a (0,2)

5 Pl (20

assuming that p(x,v,#) vanishes at the boundaries
x ==tco. One readily verifies that this equation is solved
by (19).

III. DETAILED SOLUTIONS

For the purpose of obtaining explicit solutions for
p(x,v,t) it is convenient to define the double Fourier
transform

pEvt)=["dx [¥ dve & Mp(x,pn) . QD)

The Fourier transformation of Eq. (13) then leads to a
first-order partial differential equation for p =p(&,v,t):

op _,.9p _ 215
ot é’av +alb(t)ev—a(t)v']p , 22)

where p(&,v,t) obeys the boundary condition [Eq. (15)]
p(&v,0)=1. (23)

A. Short-time domain ¢t << 7

The limit 7— o, f3/(27)— finite constant, FJ, of the
behavior of p(x,v,t) for t <<t describes the effect of a
static random force. In order to study the form of the
joint density for ¢t <<7 we must retain the effect of succes-
sively higher contributions in 1/7 in Eq. (22). For this
purpose it is convenient to make the following exact sub-
stitutions. First we define a function § =g(§,v,t) by

a

§

whose substitution in (22) yields

alt) 5_ b

p=qexp 3 VT, 8

] , (24)

aq g
_qzé—a_3+£

b'(t) . ,_a'(z) 4
ot 3 §

> 3 Y g, (25)

where c¢’(t)=dc(t)/dt. From (14a) and (14b) it follows
that the coefficient of § on the rhs is proportional to 1/7.
Thus, in order to include both the contributions propor-
tional to 1/7 and to 1/7% in the parameters which
determine p(x,v,t) [namely, the moments u, ,
=f°_°wdxffwdv x™"p(x,v,t), m,n=0,1,2,...] it is
expedient to perform the further sequence of successive
transformations [¢”(t)=d?c (¢)/dt%,c""(t)=d3c(t)/dt?]

— a |a'(t) 4 b'(t), 3

== —_ —— —_—— 2
g=Fexp e | 12 Vv 6 Ev H , (26a)
e a |a’(t) s b"(1) . 4

= o el s 570 26b
F =3 exp £ 0 7 74 2% H , (26b)

~ ab’'(t) v

~ A 2
§=T7exp 20 & (26¢)

from which it follows that, up to terms proportional to
773, T=T(£,v,t) obeys

or_, o
ot v’

whose general solution is an arbitrary function of ¢ +v/&:

27)

t+=

3

This function is determined from (24) and (26a)—-(26c) by
imposing the boundary condition (23) which yields

(& v,t)=¢ (28)

d(z)=exp Py 1 572 (29)
Clearly the solution for p(&,v,t) defined by (24),

(26a)—(26¢), (28), and (29) includes exactly the effect of
the random force at orders 7~ ! and 7~ 2 for the short-
time domain. Finally, by expanding a(?), and b(¢) in
(14a) and (14b) and their derivatives to second order in
powers of ¢ /7 we obtain, after some cancellations, the fol-
lowing exponentially bilinear expression for 5(&,v,1):

- B DU S PO L 2 PP
P&v,1) e"p{ 2 | 4 15 |5
+ 1= L |(eev+?) ] (30)
3r

where the exponential exponent is exact to order ¢*/7%.
The marginal distribution of the velocity obtained from
(30) is

p(v,t)=—21;f_w dvep(0,v,t)

—1/2
at?

t
27—
T

1___
3r

Tv2

2at?

x
3r

Xexp

-1
1 , (31)

which agrees exactly with (19) when (v%(t)) in (17) is ap-
proximated by the first two terms of its infinite series ex-
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pression in powers of ¢ /7.
Similarly, the marginal distribution of the displace-
ment is given by the Gaussian expression

1 © .
= — 1X§~
pln=5-[ " dge™p(£,0,0)

_ 1
- [27(x22)) ]2

x?.
- |> 32
Z)J (32)

PTG

where the mean squared displacement

f3

8m?2r

a_ 42>

2 ==
(xX1)) 157

(33)

is exact to order t /7. The leading term {x%(¢)) ~t* de-
scribes a uniformly accelerated spreading of the distribu-
tion of the displacement due to a static Gaussian
force (which corresponds to the limits 7— oo,
f%/(2r)—>F%>0). On the other hand, the term propor-
tional to t> describes the lowest-order reduction of
(x%(t)), due to the lowering of the velocity as a result of
the increased disorder when 7 is noninfinite. Clearly,
terms of higher order in 1/7 [i.e., terms proportional to
773,774,. .. in the exponent of (30)] may generally lead
to deviations from the Gaussian behavior (32).

The expressions for the distributions of the displace-
ment and of the velocity in the static case readily follow
from a simple argument. For a Gaussian force with a
static autocorrelation, { f(¢)f(t'))=F (2,, the moments of
the probability density for any frequency-Fourier com-
ponent [4] of f(2), except the uniform component, are
zero. This implies that f(¢) is constant, f(¢)=f, with a
Gaussian distribution,

pr()=Q2mF§)~ ' %exp(—f?/2F}) . (34)
Now, for a static force the solutlons (7a) and (7b)
are v(t)=ft/m and x(t)=ft*/(2m), so that,
from the definitions p(x,t)=_]1 adfpr(f)8(x —x(1))
and p (v, t)—f dfpf FIo(v —u( (1)), we have p(x,t)
=p,[(2m /t%)x] andp(v t)=ps[(m/t)v]. These expres-
sions coincide with (32) and (31), respectively,
when (x2%(z)) and (v%(t)) are approximated by the
leading terms, (x2(z))=f3*8m?r)"! and <(v%(t))
=f3t%(2m?*r)™!, of (33) and (17) for ¢ << 7.

Finally, one may inquire about the form of the joint
density of the displacement and the velocity. By double
Fourier inversion of (30) we obtain

—111/2
p(x,v,t)= e —l-fl 3—; ]
Xexp | — OT: u 2
t 2
-1
—2(; -——3% v? (35)
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B. Gaussian white noise (7=0)

The white-noise limit is useful because it describes the
limiting asymptotic form of the distributions for time in-
tervals large compared to the correlation time. For 7=0
Eq. (22) reduces to

—gl—av 5, (36)

whose exact solution is

3
v av
plEv,t)=¢ |t+— |exp | = (37)
4¢3 £ 3E
From the boundary condition (23) we get

#(z)=exp[ —(a&?/3)z*], which leads to

2£2
P&, v, t)=exp | —at L—}ﬂngz (38)

The Fourier inversion of p(0,v,?) and of p(§,0,¢) yields
successively the densities of v and of x:

o= | 28 - my? (39)
v, t)= xp | —
P m? P 213t
2mf3ed -2 3m2 2
p(x,t)= > exp , (40)
3m 213
with mean-squared deviations
Ik
WAYy==2, (41)
m?
f2t3
(xX1)) == . (42)
3m
Here {x2(t)) describes the anomalous, so-called

superdiffusive spreading due to the time-dependent fluc-
tuating force. In fact, the distribution (40) verifies a
diffusion equation with a time-dependent diffusion
coefficient derived by Masoliver [1] for Gaussian white
noise. For the sake of completeness we also give the joint
distribution p (x,v,t) which follows from (38), namely

3x? 3xv
—7_—+”2
t t

p(x,v,t)=

] . (43)

C. Long-time domain ¢t >>7

In order to study the solution of (22) in the asymptotic
regime ¢t >>7 we first eliminate the second term on the
rhs by means of the transformation

p&,v,1)=q(&,v,1)
Xexp [—afotdt’[a(t’)vz—b(t’)gv]

(44)
where § E~(§, v,t) obeys
97 _
L= agf [2a(t')Ww—b(t")E1dt'g . 45)
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Since now the exponential terms appearing in
[idt'a(t’)=t —r+rexp(—t/7) and in [ldt'b(¢’')
= —7t+27*—7(t +27)exp(—1/7) are proportional to 7
they may be dropped if one restricts to contributions in
the parameters of p(&,v,t) which are independent of or
linear in 7 for ¢>>r. Indeed, the terms of the form
Texp(—t/7) in (45) lead to contributions proportional to
higher powers, 7"(n > 1), in g(&,v,t). In the above ap-
proximation (45) reduces to

89 _ .99 _, e o2
ot §av 20(t —71)évg —atTEG (46)
whose exact solution, obtained by a method similar to
that of Sec. III A, is
a 2
exp {— v
[5 [ d

t—l
2

g v,t)=6 ‘t+§

3

+t‘r§2v+% ] , 47)
where ¢(z) is an arbitrary function. We now determine
¢(z) using the exact solution (17) and (19) for the margin-
al distribution of the velocity as a boundary condition.
By Fourier transforming (19) we get

pO,v,t)=exp[ —alt —TW?*], t>>7, (48)

where we have omitted the term 2arexp(—¢/7) in the
exponent since we restrict to contributions linear in 7 for

t >>7, as discussed above. From (44), (47), and (48) we
then obtain

(49)

The explicit form for the function ¢(t +v /&) for finite &
which has the limit (49) is

3
?4—3

V2

§3

t—l
2

t+2%

lim¢ £

£—0

2

3
v a§2 v
dit+— |=exp|— t+—
& 3 &
2 2
+9’—725— t+§ (50)

Indeed the exponent in (49) is given by the first two lead-
ing terms of the exponent in (50) for £—0, at finite v. Ex-
pression (50) also reduces to the exact form obtained in
Sec. III B for Gaussian white noise. We note, however,
that the above determination of ¢(z), based on the bound-
ary condition for p(v,t), is generally approximate since
the exponent on the rhs of (49) is compatible with the
dependence of ¢ on ¢ +(v/£) only up to terms propor-
tional to v/& and terms independent of v/&.
With expression (50) we obtain

3
= at 37 |2 2 T
,t = — _— —_ —_——
P&, v, t)=exp 3 Y Ef—at® |1 ; &v
—at 1——: v? (51)

3011

The Fourier inversion of p(£,0,¢) then yields a Gaussian
distribution for the displacement

1 x?
(X, )= ———— 5P|~ 5 | > (52)
P 22 172 7P | 2(x%0)) ]
with a mean-squared displacement
o |3 a2
)y="—|——— |, t>71. 53
(x%(1)) 2 |3 3 T (53)

Equation (53) coincides with (42) for 7=0 and with the
two leading terms of the asymptotic limit of the exact
mean-squared displacement for finite 7 [1,6]. On the oth-
er hand, the inverse transform of (51) is

V73

b ’t =
P = =t —3n]
v? 3(x —uvt)?
X — - ) 54
exp 4a(t —7) ot t—37) 54

Finally, we comment on the accuracy of our form (50)
for ¢[t +(v/£)]. To this end we study the moments,
K, n(2), Of the bivariate distribution p (x,v,7),

um,n=fiodx f_wwdv x"v"p (x,v,2) ,
m,n=0,1,2,..., (55)

where, in particular, u,, o and y, , are the moments of
the distributions of the displacement p(x,t), and of the
velocity, p (v,t), respectively. By multiplying both sides
of (13) by x ™v" and integrating by parts on the rhs we get

Al n
dt

=My 1,1 mRab (O, g

+n(n—Daa(t)uy,, -, mn=0,12,....
(56)

The boundary terms appearing on integration by parts
vanish because of the condition of normalization and of
bounded moments for any given . The boundary condi-
tions for (56), which follow from (15), are

/J'O,m(o)::u'm,()(o):Sm,()num,n(o)zam,oan,o : (57)

As shown above, expression (50) and the resulting form
(51) for p(&,v,t) yield the correct asymptotic form for
M, o(2) to order 7/t. Thus, in order to check the accuracy
of the Gaussian distribution (52) we now compare its
higher moments,

PSS (1) = (2m — D[], 58

with the exact moments obtained from (56) to linear or-
der in 7/t for t >>7. In solving (56) to order 7/t we ap-
proximate (14a) and (14b) by a(¢)=1 and b(¢t)=—7 and
we use Egs. (16 and 17) for the velocity moments in the
form pig,,(1)=02n —1N2at)(1—n7/t), po 2, +1(8)=0,
as well as the form (53) for u, o(¢). Indeed, it turns out
that in the process of solving (56) for successively higher
moments in terms of the lowest ones, the exponentials in
a(t) and b () enter only in combination with powers of ¢
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and/or 7, thus giving rise (via partial integrations) to
higher-order terms in 7 only. The calculation of u, ((¢)
and g o(t) based on these results and on the following
determination of mixed moments in the coupled equa-
tions (56) (e=7/1):

p=at*(l—e),
p1,3=6a’t3(1—2¢) ,
,ul,5=60a3t4(1—36) ,
= Ralt(1—Le)
o,4=32a°t(1—Z¢)
p3,3=18a’t%(1— Le) |
ps 1 =2a*(1—3¢) ,
a2 =2 (1-%e)
ps1=2a’t¥(1—4e) ,

yields the following expressions, which are exact to order
T/t

2,6
faolD)= 4“; 1-3L 1, (59)
4 3,9
/-1—5’0(t)= O‘;t 1_%% (60)

We have also verified explicitly that u, =0, u;,=0,
is50=0, ..., which clearly implies that p(x,?) is sym-
metric, p(x,1)=p(—x,t). Expressions (59 and 60) coin-
cide with the corresponding Gaussian moments (58) at
the considered order. This strongly suggests that the
Gaussian distribution (52) is actually exact to order 7/¢.

IV. CONCLUDING REMARKS

In this paper we have discussed the joint density and
the corresponding marginal densities for the displace-
ment and the velocity of a free particle subjected to a
Gaussian applied force f(¢), which is exponentially
correlated. We have derived an exact Fokker-Planck

equation for the joint distribution, whose solution we
have studied analytically in the limits of time intervals
short and long compared to the correlation time 7. In
both cases we have included the effect of the lowest
correction to the asymptotic behavior of the parameters
(moments) which determine the distributions. Exact ex-
pressions for arbitrary times have also been found for the
marginal distribution of velocities for any 7, as well as for
the joint distribution of displacements and velocities and
for the corresponding marginal distributions in the case
of Gaussian white noise (7=0).

We conclude with a brief comparison between our re-
sults for exponentially correlated Gaussian noise and
those obtained recently by Masoliver [1] for the same sys-
tem with exponentially correlated dichotomous noise. In
the latter case the joint density obeys a third-order partial
differential equation instead of our Fokker-Planck equa-
tion (13) with variable coefficients. The marginal distri-
bution of the velocity, on the other hand, obeys the
telegrapher’s equation in the dichotomous case [1] and
the diffusion equation (20) with a variable diffusion
coefficient in the Gaussian case. However, for t — o the
distribution of velocities in the dichotomous case reduces
to the Gaussian distribution (19) with the limiting form
for t — oo for the mean-square deviation, {(v2(z)) ~t. Fi-
nally, for exponentially correlated dichotomous noise the
distribution of displacements obeys a telegrapher’s equa-
tion with variable coefficients [1], whose solution for
t — o follows the same diffusion process, with a variance
(x*(t)) ~t3, as found above for the Gaussian case [Eqgs.
(52 and 53) for t— o« ]. We also note that in the Gauss-
ian white-noise limit Masoliver’s third-order partial
differential equation for p(x,v,?) reduces to a Fokker-
Planck equation [his equation (3.27)] which is identical to
Eq. (13) for 7=0 [b(#)=0, a(¢)=1]. In this case our re-
sults for p(x,t) and p(v,?) in Sec. III B coincide with
those given by Masoliver [1].

Finally, it would be interesting to compare the results
of Sec. III A for the short-time regime with correspond-
ing results for exponentially correlated dichotomous
noise. Unfortunately, Masoliver has not discussed expli-
cit solutions for the short-time domain. He also did not
discuss solutions analogous to (54) and (43) for the joint
density, p(x,v,t), in the long-time (z>>7) and in the
Gaussian white-noise (7=0) regimes.
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